12 research outputs found

    Robust Navigational Control of a Two-Wheeled Self-Balancing Robot in a Sensed Environment

    Get PDF
    This research presents an improved mobile inverted pendulum robot called Two-wheeled Self-balancing robot (TWSBR) using a Proportional-Derivative Proportional-Integral (PD-PI) robust control design based on 32-bit microcontroller in a sensed environment (SE). The robot keeps itself balance with two wheels and a PD-PI controller based on the Kalman filter algorithm during the navigation process and is able to stabilize while avoiding acute and dynamic obstacles in the sensed environment. The Proportional (P) control is used to implement turn control for obstacle avoidance in SE with ultrasonic waves. Finally, in a SE, the robot can communicate with any of the Internet of Things (IoT) devices (mobile phone or Personal Computer) which have a Java-based transmission application installed and through Bluetooth technology connectivity for wireless control. The simulation results prove the efficiency of the proposed PD-PI controller in path planning, and balancing challenges of the TWSBR under several environmental disturbances. This shows an improved control system as compared to the existing improved Adaptive Fuzzy Controller

    Use Of Smartphones for Ensuring Vulnerable Road User Safety through Path Prediction and Early Warning: An In-Depth Review of Capabilities, Limitations and Their Applications in Cooperative Intelligent Transport Systems

    Get PDF
    The field of cooperative intelligent transport systems and more specifically pedestrians to vehicles could be characterized as quite challenging, since there is a broad research area to be studied, with direct positive results to society. Pedestrians to vehicles is a type of cooperative intelligent transport system, within the group of early warning collision/safety system. In this article, we examine the research and applications carried out so far within the field of pedestrians to vehicles cooperative transport systems by leveraging the information coming from vulnerable road users’ smartphones. Moreover, an extensive literature review has been carried out in the fields of vulnerable road users outdoor localisation via smartphones and vulnerable road users next step/movement prediction, which are closely related to pedestrian to vehicle applications and research. We identify gaps that exist in these fields that could be improved/extended/enhanced or newly developed, while we address future research objectives and methodologies that could support the improvement/development of those identified gaps

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    The significance of trust to Twitter and its effect on the public/personal opinion divide: a case study

    No full text
    It has been documented that Twitter can be used as an essential method of communication between individualsand authorities during natural disasters such as floods, fire and earthquakes. However, this paper studied a real life incident that started in Twitter environment as user’s personal opinion, which was disseminated in the form of a tweet by user. In less than 48 hours, this unpopular personal opinion provoked criticism from the majority of Twitter users involved in this case study, which made it a very concerning public issue. The purpose of this study is to find out to what extent people trusted Twitter, in this case why the re-tweet rate increased so rapidly and why one tweet provoked wide criticism by involved users. Ultimately, the impact of a high number of followers on the distinction between private opinion and public offense leads to the conclusion that trust plays a tremendous role in social interactions in Twitter

    Managing Security of Healthcare Data for a Modern Healthcare System

    No full text
    The advent of Artificial Intelligence (AI) and the Internet of Things (IoT) have recently created previously unimaginable opportunities for boosting clinical and patient services, reducing costs and improving community health. Yet, a fundamental challenge that the modern healthcare management system faces is storing and securely transferring data. Therefore, this research proposes a novel Lionized remora optimization-based serpent (LRO-S) encryption method to encrypt sensitive data and reduce privacy breaches and cyber-attacks from unauthorized users and hackers. The LRO-S method is the combination of hybrid metaheuristic optimization and improved security algorithm. The fitness functions of lion and remora are combined to create a new algorithm for security key generation, which is provided to the serpent encryption algorithm. The LRO-S technique encrypts sensitive patient data before storing it in the cloud. The primary goal of this study is to improve the safety and adaptability of medical professionals’ access to cloud-based patient-sensitive data more securely. The experiment’s findings suggest that the secret keys generated are sufficiently random and one of a kind to provide adequate protection for the data stored in modern healthcare management systems. The proposed method minimizes the time needed to encrypt and decrypt data and improves privacy standards. This study found that the suggested technique outperformed previous techniques in terms of reducing execution time and is cost-effective

    A highly nonlinear substitution-box (S-box) design using action of modular group on a projective line over a finite field.

    No full text
    Cryptography is commonly used to secure communication and data transmission over insecure networks through the use of cryptosystems. A cryptosystem is a set of cryptographic algorithms offering security facilities for maintaining more cover-ups. A substitution-box (S-box) is the lone component in a cryptosystem that gives rise to a nonlinear mapping between inputs and outputs, thus providing confusion in data. An S-box that possesses high nonlinearity and low linear and differential probability is considered cryptographically secure. In this study, a new technique is presented to construct cryptographically strong 8×8 S-boxes by applying an adjacency matrix on the Galois field GF(28). The adjacency matrix is obtained corresponding to the coset diagram for the action of modular group [Formula: see text] on a projective line PL(F7) over a finite field F7. The strength of the proposed S-boxes is examined by common S-box tests, which validate their cryptographic strength. Moreover, we use the majority logic criterion to establish an image encryption application for the proposed S-boxes. The encryption results reveal the robustness and effectiveness of the proposed S-box design in image encryption applications

    An Effective Knowledge-Based Modeling Approach towards a “Smart-School Care Coordination System” for Children and Young People with Special Educational Needs and Disabilities

    No full text
    There is a significant need for a computer-aided modeling, effective information analysis and ontology knowledge base models to support both special needs children and care providers. As this research work correlated to the symmetry scope, it proposes an innovative generic smart knowledge-based “School Care Coordination System” (SCCS), which is established on a novel holistic six-layered data management model. The development of the Smart-SCCS adopts a methodology of ontology engineering to transform the given theoretical unstructured special educational needs and disabilities (SEND) code of practice into a comprehensive knowledge representation and reasoning system. The intended purpose is to deliver a system that can coordinate and bring together education, health and social care services into a single application to meet the needs of children and young people (CYP) with SEND. Moreover, it enables coordination, integration and monitoring of education, health and social care activities between different actors (formal, informal and CYP in the education sector) involved in the school care process network to provide personalized care interventions based on a predefined care plan. The developed ontology knowledge-based model has been proven efficient and solved the enormous difficulties faced by schools and local authorities on a daily basis. It enabled the coordination of care and integration of information for CYP from different departments in health, social care and education. The developed model has received significant attention with great feedback from all the schools and the local authorities involved, showing its efficiency and robustness

    C2S2-LOOP: Circular Chessboard-Based Secure Source Location Privacy Model Using ECC-ALO in WSN

    No full text
    Source location privacy (SLP) is a serious issue in wireless sensor networks (WSN) since Eavesdroppers tries to determine the source location. Hunting Animals in Forest is considered as an example for SLP. Many conventional schemes have been proposed for SLP in WSN, namely, Random Walk Routing, and Fake Messages Transmission, which cause critical issues (less safety period, packet delivery latency, and high energy consumption). Furthermore, the security analysis is not properly investigated in any previous work. In this paper, we propose a new model called the circular chessboard-based secure source location privacy model (C2S2-LOOP) with the following tasks: key generation, network topology management (clustering), intercluster routing (travel plan), and data packets encryption. All sensor nodes are deployed in a circular chessboard (Circular Field) and the key generation (PUK,SEK) is invoked using elliptic curve cryptography (ECC) with Ant Lion Optimization algorithm, which mitigate the issues of conventional ECC. Then, the network topology is managed using clustering where residual energy of the nodes is used for Cluster Head (CH) selection. Intercluster routing is implemented using packet traversing using clockwise and anticlockwise directions, which are mainly concerned with establishing a secure route between the source to the destination node. To ensure data security, we present the Chaotic Artificial Neural Network (C-ANN) in which encryption is executed. Assume that CH near to the source node has a high trust value, then it traverses (clock-wise) real packets towards sink node and similarly in the left side region (anticlockwise), fake packets are transmitted. Network simulations (OMNeT++) are evaluated and compared with the previous approaches, and finally, our proposed scheme concludes that it maintains not only source node location privacy (large safety period) and also reduces energy consumption by more than 40% and latency by more than 35%

    Deep sentiments in Roman Urdu text using Recurrent Convolutional Neural Network model

    No full text
    Although over 64 million people worldwide speak Urdu language and are well aware of its Roman script, limited research and efforts have been made to carry out sentiment analysis and build language resources for the Roman Urdu language. This article proposes a deep learning model to mine the emotions and attitudes of people expressed in Roman Urdu - consisting of 10,021 sentences from 566 online threads belonging to the following genres: Sports; Software; Food & Recipes; Drama; and Politics. The objectives of this research are twofold: (1) to develop a human-annotated benchmark corpus for the under-resourced Roman Urdu language for the sentiment analysis; and (2) to evaluate sentiment analysis techniques using the Rule-based, N-gram, and Recurrent Convolutional Neural Network (RCNN) models. Using Corpus, annotated by three experts to be positive, negative, and neutral with 0.557 Cohen's Kappa score, we run two sets of tests, i.e., binary classification (positive and negative) and tertiary classification (positive, negative and neutral). Finally, the results of the RCNN model are analyzed by comparing it with the outcome of the Rule-based and N-gram models. We show that the RCNN model outperforms baseline models in terms of accuracy of 0.652 for binary classification and 0.572 for tertiary classification
    corecore